Gradient Domain HDR Compression

- > Gradient Domain High Dynamic Range Compression
 - > Fattal et al.
 - > SIGGRAPH 2002

- > Image Smoothing via L0 Gradient Minimization
 - » Xu et al.
 - » SIGGRAPH Asia 2011

Problem

 Developing a technique for high dynamic range (HDR) compression that enables HDR images to be displayed on low dynamic range devices

you might lose the details after applying direct compression

Preserving Details Using Decomposition

 Decompose luminance into reflectance and illumination

$$I(x,y) = R(x,y) L(x,y)$$

 Compress the illumination, which is of high dynamic range, and re-multiply the reflectance and the compressed illumination to get a displayable image

$$\tilde{I}(x,y) = R(x,y) \tilde{L}(x,y)$$

Observation

- Drastic changes in the luminance across a high dynamic range image must give rise to large magnitude luminance gradients at some scale
- Fine details, such as texture, correspond to gradients of much smaller magnitude

The Idea of Gradient Attenuation

- Identify large gradients at various scales, and attenuate their magnitudes while keeping their direction unaltered
- The attenuation is progressive, penalizing larger gradients more heavily than smaller ones, thus compressing drastic luminance changes, while preserving fine details.

A One-Dimensional Example

Extension to HDR Images

In 2D:

$$G(x,y) = \nabla H(x,y) \Phi(x,y)$$

There might not exist an image I such that $G = \nabla I$

$$\nabla I = (\partial I / \partial x, \partial I / \partial y)$$
 must satisfy

$$\frac{\partial^2 I}{\partial x \partial y} = \frac{\partial^2 I}{\partial y \partial x}$$

which is rarely the case for the attenuated gradient ${\cal G}$

[px,py]=gradient(I); contour(I), hold on, quiver(px,py), hold off

How to find an *I* whose gradient looks like the attenuated gradient *G*?

There might not exist an image I such that $G = \nabla I$

Least Squares

> Minimize the functional

$$\iint F(\nabla I, G) \, dx \, dy$$

where $F(\nabla I, G) = \|\nabla I - G\|^2 = \left(\frac{\partial I}{\partial x} - G_x\right)^2 + \left(\frac{\partial I}{\partial y} - G_y\right)^2$

Euler-Lagrange equation (Calculus of Variations) $\frac{\partial F}{\partial I} - \frac{d}{dx}\frac{\partial F}{\partial I_x} - \frac{d}{dy}\frac{\partial F}{\partial I_y} = 0$

$$\frac{\partial F}{\partial I} - \frac{d}{dx} \frac{\partial F}{\partial I_x} - \frac{d}{dy} \frac{\partial F}{\partial I_y} = 0$$
$$F(\nabla I, G) = \|\nabla I - G\|^2 = \left(\frac{\partial I}{\partial x} - G_x\right)^2 + \left(\frac{\partial I}{\partial y} - G_y\right)^2$$

$$2\left(\frac{\partial^2 I}{\partial x^2} - \frac{\partial G_x}{\partial x}\right) + 2\left(\frac{\partial^2 I}{\partial y^2} - \frac{\partial G_y}{\partial y}\right) = 0.$$

We Get a Poisson Equation

$$\nabla^2 I = \operatorname{div} G$$

$$2\left(\frac{\partial^2 I}{\partial x^2} - \frac{\partial G_x}{\partial x}\right) + 2\left(\frac{\partial^2 I}{\partial y^2} - \frac{\partial G_y}{\partial y}\right) = 0.$$

Laplacian operator
$$\nabla^2 I = \frac{\partial^2 I}{\partial x^2} + \frac{\partial^2 I}{\partial y^2}$$

divergence div
$$G = \frac{\partial G_x}{\partial x} + \frac{\partial G_y}{\partial y}$$

Solving the Poisson Equation for *I*

> We need to solve the Poisson equation

$$\nabla^2 I = \operatorname{div} G$$

to obtain I

Gradient Attenuation Function

 $G(x,y) = \nabla H(x,y) \Phi(x,y)$

> Gaussian pyramid H_0, H_1, \ldots, H_d

$$\nabla H_k = \left(\frac{H_k(x+1,y) - H_k(x-1,y)}{2^{k+1}}, \frac{H_k(x,y+1) - H_k(x,y-1)}{2^{k+1}} \right)$$

$$\varphi_k(x,y) = \frac{\alpha}{\|\nabla H_k(x,y)\|} \left(\frac{\|\nabla H_k(x,y)\|}{\alpha} \right)^{\beta} \qquad \beta < 1$$

lpha is set to 0.1 times the average gradient magnitude

The Full Gradient Attenuation Function

> Coarse to fine

> Attenuate the large gradients in different scales

darker shade \rightarrow stronger attenuation

How to Solve a Poisson Equation $\nabla^2 I = \operatorname{div} G$

- Boundary condition $\nabla I \cdot \mathbf{n} = 0$
- > The solution is defined up to a single additive term

central difference

$$\nabla^2 I(x,y) \approx I(x+1,y) + I(x-1,y) + I(x,y+1) + I(x,y-1) - 4I(x,y)$$

forward difference

$$\nabla H(x,y) \approx \left(H(x+1,y) - H(x,y), H(x,y+1) - H(x,y)\right)$$

backward difference

$$G(x,y) = \nabla H(x,y) \Phi(x,y)$$

div $G \approx G_x(x,y) - G_x(x-1,y) + G_y(x,y) - G_y(x,y-1)$

Finite Difference

How to Solve a Poisson Equation $\nabla^2 I = \operatorname{div} G$

 $\nabla I \cdot \mathbf{n} = 0$

 $\nabla^2 I(x,y) \approx I(x+1,y) + I(x-1,y) + I(x,y+1) + I(x,y-1) - 4I(x,y)$

Sparse Linear System

- > Using multigrid methods
 - > Complexity $O(M^*N)$

[Ward, 97]

gradient attenuation

LDR Image Enhancement

> Image Smoothing via L0 Gradient Minimization

- » Xu et al.
- » SIGGRAPH Asia 2011

Sparse Linear System

> Using multigrid methods

Bilateral filtering

L0 smoothing

1D Smoothing

LO norm of derivatives
$$c(f) = #\{p \mid |f_p - f_{p+1}| \neq 0\}$$

forward difference

k

input g smoothed f

Optimization problem

when we have the set of the set o

$$\min_{f} \sum_{p} (f_p - g_p)^2 \text{ s.t. } c(f) =$$
$$\min_{f} \sum_{p} (f_p - g_p)^2 + \lambda \cdot c(f)$$

2D Formulation

gradient
$$\nabla S_p = (\partial_x S_p, \partial_y S_p)^T$$

gradient measure $C(S) = \# \{ p \mid |\partial_x S_p| + |\partial_y S_p| \neq 0 \}$

$|\partial S_p|$ sum of gradient magnitude in RGB

Optimization problem

$$\min_{S} \left\{ \sum_{p} (S_p - I_p)^2 + \lambda \cdot C(S) \right\}$$

Solver

auxiliary variables $h_p v_p$

$$\min_{S,h,v} \left\{ \sum_{p} (S_p - I_p)^2 + \lambda C(h,v) + \beta ((\partial_x S_p - h_p)^2 + (\partial_y S_p - v_p)^2) \right\}$$
$$C(h,v) = \# \left\{ p \mid |h_p| + |v_p| \neq 0 \right\}$$

two subproblems alternately solve for $\, S \,$ and (h,v)

Subproblem 1: computing S

minimize
$$\left\{\sum_{p} (S_p - I_p)^2 + \beta \left((\partial_x S_p - h_p)^2 + (\partial_y S_p - v_p)^2 \right) \right\}$$

$$S = \mathcal{F}^{-1} \left(\frac{\mathcal{F}(I) + \beta(\mathcal{F}(\partial_x)^* \mathcal{F}(h) + \mathcal{F}(\partial_y)^* \mathcal{F}(v))}{\mathcal{F}(1) + \beta(\mathcal{F}(\partial_x)^* \mathcal{F}(\partial_x) + \mathcal{F}(\partial_y)^* \mathcal{F}(\partial_y)} \right)$$

$$S - I + \beta (\partial_x^T \partial_x S - \partial_x^T h + \partial_y^T \partial_y S - \partial_y^T v) = 0$$

$$\mathcal{F}(S) - \mathcal{F}(I) + \beta \left(\mathcal{F}(\partial_x^T \partial_x S) - \mathcal{F}(\partial_x^T h) + \mathcal{F}(\partial_y^T \partial_y S) - \mathcal{F}(\partial_y^T v) \right) = 0$$

Subproblem 2: computing (h, v)

$$\min_{h,v} \left\{ \sum_{p} (\partial_x S_p - h_p)^2 + (\partial_y S_p - v_p)^2) + \frac{\lambda}{\beta} C(h,v) \right\}$$

$$\Longrightarrow \sum_{p} \min_{h_p,v_p} \left\{ (h_p - \partial_x S_p)^2 + (v_p - \partial_y S_p)^2 + \frac{\lambda}{\beta} H(|h_p| + |v_p|) \right\}$$

$$\longleftrightarrow$$

$$\lim_{p \to \infty} \left\{ (h_p - \partial_x S_p)^2 + (v_p - \partial_y S_p)^2 + \frac{\lambda}{\beta} H(|h_p| + |v_p|) \right\}$$

$$E_p = \left\{ (h_p - \partial_x S_p)^2 + (v_p - \partial_y S_p)^2 + \frac{\lambda}{\beta} H(|h_p| + |v_p|) \right\}$$

分

minimized by

$$(h_p, v_p) = \begin{cases} (0,0) \\ (\partial_x S_p, \partial_y S_p) \end{cases}$$

 $(\partial_x S_p)^2 + (\partial_y S_p)^2 \le \lambda/\beta$ otherwise

Excerpt from the paper

Proof. 1) When $\lambda/\beta \ge (\partial_x S_p)^2 + (\partial_y S_p)^2$, non-zero (h_p, v_p) yields $E_p((h_p, v_p) \ne (0, 0)) = (h_p - \partial_x S_p)^2 + (v_p - \partial_y S_p)^2 + \lambda/\beta$, $\ge \lambda/\beta$, $\ge (\partial_x S_p)^2 + (\partial_y S_p)^2$. (13)

Note that $(h_p, v_p) = (0, 0)$ leads to

$$E_p((h_p, v_p) = (0, 0)) = (\partial_x S_p)^2 + (\partial_y S_p)^2.$$
(14)

Comparing Eqs. (13) and (14), the minimum energy $E_p^* = (\partial_x S_p)^2 + (\partial_y S_p)^2$ is produced when $(h_p, v_p) = (0, 0)$.

2) When $(\partial_x S_p)^2 + (\partial_y S_p)^2 > \lambda/\beta$ and $(h_p, v_p) = (0, 0)$, Eq. (14) still holds. But $E_p((h_p, v_p) \neq (0, 0))$ has its minimum value λ/β when $(h_p, v_p) = (\partial_x S_p, \partial_y S_p)$. Comparing these two values, the minimum energy $E_p^* = \lambda/\beta$ is produced when $(h_p, v_p) = (\partial_x S_p, \partial_y S_p)$.

Algorithm 1 L₀ Gradient Minimization

Input: image *I*, smoothing weight λ , parameters β_0 , β_{\max} , and rate κ **Initialization:** $S \leftarrow I$, $\beta \leftarrow \beta_0$, $i \leftarrow 0$ **repeat** With $S^{(i)}$, solve for $h_p^{(i)}$ and $v_p^{(i)}$ in Eq. (12). With $h^{(i)}$ and $v^{(i)}$, solver for $S^{(i+1)}$ with Eq. (8). $\beta \leftarrow \kappa\beta$, i + +. **until** $\beta \ge \beta_{\max}$ **Output:** result image *S*

Applications: Edge Enhancement

(a) Input

(b) Ours ($\lambda = 0.0015$, $\kappa = 1.05$)

(c) Gradient map of (a)

(d) Gradient map of (b)

Applications: Image Abstraction and Pencil Sketching

Applications: Clip-Art Compression Artifact Removal

Applications: Layer-Based Contrast Manipulation

re-blur
$$\min_{\sigma} \left\{ \sum_{p} \left((G(\sigma_p) * S) - I_p \right)^2 + \gamma \left((\partial_x \sigma_p)^2 + (\partial_y \sigma_p)^2 \right) \right\}$$

to find suitable Gaussian scale for each pixel assigning discrete values to $\sigma_p \rightarrow$ a labeling problem

enhance gradients in the detail layer

Applications: Tone Mapping

as an alternative to bilateral filter

